
16.3) The Fundamental Theorem for Line Integrals

As discussed in Section 16.1, a conservative vector field is a vector field for which there
exists a potential function, i.e., a real-valued function whose gradient is the given vector
field. The potential function and the vector field have the same domain.

If a vector field F is conservative, then a potential function for F may be denoted f.

In two dimensions, we have Fx,y   px,y,qx,y . If fx,y is a potential function for F,
then fx,y  Fx,y. Since fx,y   fxx,y, fyx,y , we must have fxx,y  px,y and
fyx,y  qx,y.

In three dimensions, we have Fx,y, z   px,y, z,qx,y, z, rx,y, z . If fx,y, z is a
potential function for F, then fx,y, z  Fx,y, z. Since fx,y, z 
 fxx,y, z, fyx,y, z, fzx,y, z , we must have fxx,y, z  px,y, z, fyx,y, z  qx,y, z, and
fzx,y, z  rx,y, z.

In Section 16.1, we cited (but did not answer) two key questions:
1. Given a vector field, how do we decide whether or not it is conservative–i.e.,

whether or not it has a potential function?
2. If a vector field is conservative, how do we find a potential function for it?

We will now answer both of these questions.

Two-dimensional vector fields:

If f is a potential function for F, then fx  p and fy  q. It follows that:
 fxx  px

 fxy  py

 fyx  qx

 fyy  qy

By Clairaut’s Theorem, fxy  fyx, so py  qx. This is, in fact, our test for whether or not a
two-dimensional vector field is conservative. (Notice that we can disregard the “pure”
second-order partial derivatives, fxx and fyy. In other words, we can disregard px and qy.
We need only concern ourselves with the “mixed” second-order partial derivatives, fxy and
fyx, which correspond to py and qx. 

In Section 16.1, we mentioned that the vector field Fx,y   10x, 6y2  is conservative. We
may now confirm this by noting that py  qx  0.

In Section 16.2, the vector field in Example 1 was Fx,y   y  x, x , and the vector field
in Examples 2 and 3 was Fx,y   x  y,x  y . Both of these vector fields are
conservative; in both cases, we have py  qx  1.
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Now let’s explore the technique for finding the potential function, via anti-differentiation.

Since fx  px,y, we can recover f by anti-differentiating px,y with respect to x.

f   fx dx   px,y dx. This will give us a sum of at least two terms. Every term besides
the last term will be a function of x or a function of both x and y. The last term will be an
unknown function of y, denoted gy.

Gather together the terms containing x (either x alone or both x and y, and call this x,y.
So f  x,y  gy.

Differentiating with respect to y, we get fy  yx,y  gy. Set this equal to qx,y. So
gy  qx,y  yx,y. In most cases, some terms will cancel out, giving us a relatively
simple formula for gy.

Now that we know gy, we can recover gy by anti-differentiating gy with respect to y,
i.e., we find gy dy. When doing so, we typically omit the arbitrary constant term.

Once we have found gy, we add it to x,y. This gives us our formula for f, i.e.,
f  x,y  gy.

Example 1: Let Fx,y   2xe3y  3x2, 3x2e3y  4y3 . Here, px,y  2xe3y  3x2, and
qx,y  3x2e3y  4y3.

py  qx  6xe3y, so the vector field is conservative.

f   px,y dx  2xe3y  3x2 dx  x2e3y  x3  gy. Here, x,y  x2e3y  x3.

fy  3x2e3y  gy. Here, yx,y  3x2e3y.

3x2e3y  gy  3x2e3y  4y3, so gy  4y3.

gy  gy dy  4y3dy  y4.

So f  x2e3y  x3  y4.

Example 2: Let Fx,y   x  y,x  y , as in Examples 2 and 3 of Section 16.2. Here,
px,y  x  y, and qx,y  x  y.

f   px,y dx  x  y dx  1
2 x

2  xy  gy. Here, x,y  1
2 x

2  xy.

fy  x  gy. Here, yx,y  x.
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x  gy  x  y, so gy  y.

gy  gy dy  y dy   1
2 y

2.

So f  1
2 x

2  xy  1
2 y

2.

Three-dimensional vector fields:

If f is a potential function for F, then fx  p, fy  q, and fz  r. It follows that:
 fxy  py

 fxz  pz

 fyx  qx

 fyz  qz

 fzx  rx
 fzy  ry
(We may ignore the three “pure” second-order partial derivatives, fxx, fyy, and fzz. 

By Clairaut’s Theorem, fxy  fyx, fxz  fzx, and fyz  fzy. Hence:
 py  qx

 pz  rx
 qz  ry
This is, in fact, our test for whether or not a three-dimensional vector field is conservative
(i.e., all three equations must hold).

In Section 16.1, we mentioned that the vector fields Fx,y, z   yz,xz,xy  and Fx,y, z 
 2xy3  3x2z5, 3x2y2  2yz4, 4y2z3  5x3z4  are conservative. We may now confirm this.
 In the former case, py  qx  z, pz  rx  y, and qz  ry  x.
 In the latter case, py  qx  6xy2, pz  rx  15x2z4, and qz  ry  8yz3.

In Section 16.2, the vector field in Example 4 was Fx,y, z   z,x,y . This vector field is
not conservative, because py  0, whereas qx  1.

Now let’s explore the technique for finding the potential function, via anti-differentiation.

Since fx  px,y, z, we can recover f by anti-differentiating px,y, z with respect to x.

f   fx dx   px,y, z dx. This will give us a sum of at least two terms. Every term besides
the last term will contain x (possibly accompanied by y and/or z. The last term will be an
unknown function of y and z, denoted gy, z.

Gather together the terms containing x, and call this x,y, z. So f  x,y, z  gy, z.
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Differentiating with respect to y, we get fy  yx,y, z  gyy, z. Set this equal to qx,y, z.
So gyy, z  qx,y, z  yx,y, z. In most cases, some terms will cancel out, giving us a
relatively simple formula for gyy, z.

Now that we know gyy, z, we can recover gy, z by anti-differentiating gyy, z with respect
to y, i.e., we find gyy, z dy. This will give us a sum of at least two terms. Every term
besides the last term will be a function of y or a function of both y and z. The last term will
be an unknown function of z, denoted hz.

Gather together the terms containing y (either y alone or both y and z, and call this y, z.
So gy, z  y, z  hz.

By substitution, f  x,y, z  y, z  hz.

Differentiating with respect to z, we get fz  zx,y, z  zy, z  hz. Set this equal to
rx,y, z. So hz  rx,y, z  zx,y, z  zy, z. In most cases, some terms will cancel out,
giving us a relatively simple formula for hz.

Now that we know hz, we can recover hz by anti-differentiating hz with respect to z,
i.e., we find hz dz. When doing so, we typically omit the arbitrary constant term.

Once we have found hz, we add it to x,y, z  y, z. This gives us our formula for f, i.e.,
f  x,y, z  y, z  hz.

Example 3:

Let Fx,y   2xy  z2, x2  2z, 2y  2xz . Here, px,y, z  2xy  z2, qx,y, z  x2  2z, and
rx,y, z  2y  2xz.

We confirm the vector field is conservative as follows:
1. py  qx  2x
2. pz  rx  2z
3. qz  ry  2

f   px,y, z dx  2xy  z2dx  x2y  xz2  gy, z. Here, x,y, z  x2y  xz2.

fy  x2  gyy, z. Here, yx,y, z  x2.

x2  gyy, z  x2  2z, so gyy, z  2z.

gy, z  gyy, z dy  2z dy  2yz  hz. Here, y, z  2yz.

By substitution, f  x,y, z  y, z  hz  x2y  xz2  2yz  hz.

4



fz  2xz  2y  hz.

2xz  2y  hz  2y  2xz, so hz  0.

Since hz  0, hz must be a constant function. We may take this to be hz  0.

Thus, f  x2y  xz2  2yz.

The Fundamental Theorem of Line Integrals:

Suppose F is a conservative vector field with potential function f. Let C be a simple,
piecewise-smooth curve with initial point A and final point B. Then 

C
F  T ds  fB  fA.

 In two dimensions, if A  a1,a2 and B  b1,b2, then fB means fb1,b2, and fA
means fa1,a2.

 In three dimensions, if A  a1,a2,a3 and B  b1,b2,b3, then fB means
fb1,b2,b3, and fA means fa1,a2,a3.

This explains why a conservative vector field is independent of path: The value of the
integral depends only on the value of the potential function at the points A and B. The
actual path from A to B is irrelevant.

In Example 1 above, we saw that the vector field Fx,y   2xe3y  3x2, 3x2e3y  4y3  has
potential function f  x2e3y  x3  y4. Let us interpret this vector field as a force field. Then
the work done in moving a particle through this force field from the point A  1,0 to the
point B  2,1 must be f2,1  f1,0.
 f2,1  4e3  8  1  4e3  9.
 f1,0  1  1  0  2.
 Therefore, the work done is 4e3  9  2  4e3  7.

In Example 2 above, we saw that the vector field Fx,y   x  y,x  y  has potential
function f  1

2 x
2  xy  1

2 y
2. This same vector field was considered in Examples 2 and 3 of

Section 16.2. There, we saw that the work done in moving a particle from the point 1,0 to
the point 1,0 was zero. We can now obtain that result much more efficiently, using the
Fundamental Theorem of Line Integrals:
 f1,0  1

2

 f1,0  1
2

 Therefore, the work done is 1
2  1

2  0.

In 16.2 Example 3, the path was a semicircle–the top half of the unit circle centered at the
origin. Suppose that, instead of traveling halfway around the circle, our particle traveled
only one sixth of the way around, i.e., from the point 1,0 to the point  1

2 ,
3
2 . Then the

work done would be computed as follows:

 f 1
2 ,

3
2   1

2 
1
2 

2  1
2

3
2  1

2 
3
2 2  1

8  3
4  3

8  3  1
4

 f1,0  1
2
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 Therefore, the work done is 3  1
4  1

2  3  3
4

In Example 3 above, we saw that the vector field Fx,y   2xy  z2, x2  2z, 2y  2xz  is
conservative and has potential function f  x2y  xz2  2yz. Let us interpret this vector field
as a force field. Then the work done in moving a particle through this force field from the
point A  0,1,2 to the point B  1,2,1 must be f1,2,1  f0,1,2.
 f1,2,1  2  1  4  5.
 f0,1,2  0  0  4  4.
 Therefore, the work done is 5  4  1.
On the other hand, if we have the same vector field but the points A  3,2,1 and
B  1,2,3, then the work will be computed as follows:
 f1,2,3  2  9  12  5.
 f3,2,1  18  3  4  11.
 Therefore, the work done is 5  11  16.

Line Integrals on closed curves:

In a conservative vector field, if C is a closed curve, then 
C
F  T ds  0. This should be

obvious, because if A  B, then fB  fA  fB  fB  0. Thus, in a conservative force
field, when a particle travels along any path and returns to its starting point, the work done is
zero.

Bear in mind, if the vector field is not conservative, then the work done is moving a particle
along any path back to its starting point may not be zero.
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Addendum to Section 16.3

In Section 16.3, we learned the Fundamental Theorem of Line Integrals, which works for
line integrals in both two dimensions and three dimensions. However, it should be noted
that, in either case, the theorem deals only with a particular kind of line integral, namely, a
work or circulation integral, 

C
F  T ds.

In Section 16.2, we learned of another kind of line integral, the flux integral, 
C
F  n ds.

(We developed this concept only in two dimensions, not in three dimensions.)

Can we develop a theory for flux integrals analogous to the theory we have developed for
work or circulation integrals? Indeed we can.

In two dimensions, with F   p,q , we have 
C
F  T ds  

C
p dx  q dy, and


C
F  n ds  

C

p dy  q dx. The latter may also be written as 
C

q dx  p dy.

Analogous to a potential function for F is a stream function. Whereas a potential function
is a real-valued function fx,y whose gradient is  p,q , a stream function is a real-valued
function x,y whose gradient is  q,p . In other words,    q,p , so
xx,y  qx,y and yx,y  px,y.

Whereas a vector field is said to be conservative if it has a potential function, a vector field
is said to be source-free if it has a stream function.

F is conservative if py  qx. F is source-free if qy  px.

Suppose F is a source-free vector field with stream function . Let C be a simple,
piecewise-smooth curve with initial point A and final point B. Then 

C
F  n ds  B  A.

I like to refer to 
C
F  T ds  fB  fA as the First Fundamental Theorem of Line Integrals,

and to 
C
F  n ds  B  A as the Second Fundamental Theorem of Line Integrals.

(This is not official terminology.)

In a source-free vector field, if C is a closed curve, then 
C
F  n ds  0. This should be

obvious, because if A  B, then B  A  B  B  0.
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